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Hyperbolic surfaces
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Any smooth orientable surface of genus g ≥ 2 admits a metric of constant

negative curvature (usually chosen to be −1), called hyperbolic metric.

Allowing to metric to have several singularities (cusps), one can construct a

hyperbolic metric also on a sphere and on a torus.
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A smooth closed curve on a surface is called simple if it does not have

self-intersections.

Suppose that we have a simple closed curve γ on a hyperbolic surface
(possibly with cusps). Suppose that the curve is essential, that is not

contractible to a small curve encircling some disc or some cusp.

Interpreting our curve as an elastic loop, let it slide along the surface to contract
to the shortest shape in our hyperbolic metric. We get a closed geodesic, which

remains to be smooth non self-intersecting curve.
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Fact. For any hyperbolic metric and any essential simple closed curve on a

surface, there exists a unique geodesic representative in the free homotopy

class of the curve; it is realized by a simple closed geodesic.

Speaking of a “free homotopy class” we puncture the surface at all cusps so

that curves do not traverse cusps along continuous deformations.
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Let us say that two simple closed curves on a smooth surface have the same

topological type if there is a diffeomorphism of the surface sending one curve to

another.

It immediately follows from the classification theorem of surfaces that there is a

finite number of topological types of simple closed curves. For example, if the

surface does not have punctures, all simple closed curves which do not
separate the surface into two pieces, belong to the same class.

Indeed: the classification theorem implies that cutting the surface open along
such two simple closed curves we get two diffeomorphic surfaces with two

boundary components. A little extra effort allows to build a diffeomorphism of

the initial closed surface to itself sending the first curve to the second.
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The group of all diffeomorphisms of a closed smooth orientable surface of

genus g quotient over diffeomorphisms homotopic to identity is called the

mapping class group and is denoted by Modg.

When the surface has n marked points (punctures) we require that

diffeomorphism sends marked points to marked points; the corresponding

mapping class group is denoted Modg,n.
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Exercise: separating curves
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Curves presented at the picture are separating. (Choosing an appropriate

basis of cycles and compute intersection numbers of each curve with all basic

cycles.) It is a nice exercise to detect which curves are essential and which

essential curves belong to the same orbit of the mapping class group

(The picture is taken from the book of B. Farb and D. Margalit “A Primer on

Mapping Class Groups”.)



Exercise: orbits of the mapping class group
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Select all simple closed curves in the picture below which might be isotopic to

simple closed hyperbolic geodesics on a twice-punctured surface of genus two.

How many distinct orbits of Mod2,2 they represent? Indicate which curves

correspond to which orbit.
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Consider a configuration of four distinct points on the Riemann sphere CP1.

Using appropriate holomorphic automorphism of CP1 we can send three out of

four points to 0, 1 and ∞. There is no more freedom: any further holomorphic

automorphism of CP1 fixing 0, 1 and ∞ is already the identity transformation.

The remaining point serves as a complex parameter in the space M0,4 of
configurations of four distinct points on CP1 (up to a holomorphic diffeomorphism).
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points are in natural bijection with hyperbolic metrics of curvature −1 with

cusps at the marked points, so the moduli space M0,4 can be also seen as the

family of hyperbolic spheres with four cusps. Deforming the configuration of

points we change the shape of the corresponding hyperbolic surface.
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Similarly, we can consider the moduli space M0,n of spheres with n cusps.

The space Mg,n of configurations of n distinct points on a smooth closed
orientable Riemann surface of genus g > 0 is even richer. While the sphere

admits only one complex structure, a surface of genus g ≥ 2 admits complex

(3g − 3)-dimensional family of complex structures. As in the case of the

Riemann sphere, complex structures on a smooth surface with marked points

are in natural bijection with hyperbolic metrics of constant negative curvature
with cusps at the marked points. For genus g ≥ 2 one can let n = 0 and

consider the space Mg = Mg,0 of hyperbolic surfaces without cusps.
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Multicurves
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Consider now several pairwise nonintersecting essential simple closed curves

γ1, . . . , γk on a smooth surface Sg,n of genus g with n punctures. We have

seen that in the presence of a hyperbolic metric X on Sg,n the simple closed

curves become simple closed geodesics.

Fact. For any hyperbolic metric X the simple closed geodesics representing

γ1, . . . , γk do not have pairwise intersections.
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We can consider formal linear combinations γ :=
∑k

i=1 aiγi of such simple

closed curves with positive coefficients. When all coefficients ai are integer

(respectively rational), we call such γ integral (respectively rational) multicurve.

In the presence of a hyperbolic metric X we define the hyperbolic length of a
multicurve γ as ℓγ(X) :=

∑k
i=1 aiℓX(γi), where ℓX(γi) is the hyperbolic

length of the simple closed geodesic in the free homotopy class of γi.

Denote by sX(L, γ) the number of simple closed geodesic multicurves on X

of topological type [γ] and of hyperbolic length at most L.
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Theorem (M. Mirzakhani, 2008). For any rational multi-curve γ and any

hyperbolic surface X in Mg,n one has

sX(L, γ) ∼ B(X) ·
c(γ)

bg,n
· L6g−6+2n as L → +∞ .

Here the quantity B(X) depends only on the hyperbolic metric X (and would

be specified later); bg,n is a global constant depending only on g and n (and

would be specified later); c(γ) depends only on the topological type of γ (and

would be computed shortly).
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would be computed shortly).

Corollary (M. Mirzakhani, 2008). For any hyperbolic surface X in Mg,n, and

any two rational multicurves γ1, γ2 on a smooth surface Sg,n considered up to
the action of the mapping class group one obtains

lim
L→+∞

sX(L, γ1)

sX(L, γ2)
=

c(γ1)

c(γ2)
.



Example
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

Example (M. Mirzakhani (2008); confirmed experimentally in 2017 by M. Bell

and S. Schleimer); confirmed in 2017 by more implicit computer experiment of

V. Delecroix and by other means.

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.
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Bordered hyperbolic surfaces
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Cutting a hyperbolic surface by several pairwise disjoint simple closed

geodesics we get one or several bordered hyperbolic surfaces with geodesic

boundary components.

Denote by Mg,n(b1, . . . , bn) the moduli space of hyperbolic surfaces of genus

g with n geodesic boundary components of lengths b1, . . . , bn.

By convention, the zero value bi = 0 corresponds to a cusp so the moduli

space Mg,n corresponds to Mg,n(0, . . . , 0) in this more general setting.
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Topologically, a hyperbolic pair of pants P ∈ M0,3(b1, b2, b3) is a sphere with

three holes. For any triple of nonnegative numbers (b1, b2, b3) ∈ R
3
+ there

exists a unique hyperbolic pair of pants P (b1, b2, b3) with geodesic boundaries

of given lengths (assuming that the boundary components of P are numbered).

b1

ν1,2

b2

b3

Two geodesic boundary components γ1, γ2 of any hyperbolic pair of pants P

can be joined by a single geodesic segment ν1,2 orthogonal to both γ1 and γ2.
Thus, every geodesic boundary component γ of any hyperbolic pair of pants

might be endowed with a canonical distinguished point.

The construction can be extended to the situation, when both remaining

boundary components of the pair of pants are represented by cusps.
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Twist parameter
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Two hyperbolic pairs of pants P ′(b′1, b
′
2, ℓ) and P ′′(b′′1, b

′′
2, ℓ) sharing the same

length ℓ > 0 of one of the geodesic boundary components can be glued
together. The hyperbolic metric on the resulting hyperbolic surface Y is

perfectly smooth and the common geodesic boundary of P ′ and P ′′ becomes

a simple closed geodesic γ on Y .

P ′ τ

γ

P ′′

Each geodesic boundary component of any pair of pants is endowed with a

distinguished point. These distinguished points record how the pairs of pants
P ′ and P ′′ are twisted with respect to each other. Hyperbolic surfaces Y (τ)
corresponding to different values of the twist parameter τ in the range [0, ℓ[ are

generically not isometric.
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Any hyperbolic surface X of genus g with n geodesic boundary components

admits a decomposition in hyperbolic pairs of pants glued along simple closed

geodesics γ1, . . . , γ3g−3+n. Lengths ℓγi(X) of the resulting simple closed

geodesics γi involved in pants decomposition of X and twists τγi(X) along

them serve as local Fenchel–Nielsen coordinates in Mg,n(b1, . . . , bn).

By the work of W. Goldman Mg,n(b1, . . . , bn) carries a natural closed
non-degenerate 2-form ωWP called the Weil–Petersson symplectic form.

S. Wolpert proved that ωWP has particularly simple expression in
Fenchel–Nielsen coordinates. No matter what pants decomposition we chose,

we get

ωWP =

3g−3+n
∑

i=1

dℓγi ∧ dτγi .
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Mirzakhani–Weil–Petersson volumes
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The wedge power ωn of a symplectic form on a manifold M2n of real
dimension 2n defines a volume form on M2n.

The volume Vg,n(b1, . . . , bn) of the moduli space Mg,n(b1, . . . , bn) with

respect to the volume form
1

(3g − 3 + n)!
· ω

3g−3+n
WP is called the

Mirzakhani–Weil–Petersson volume of the moduli space Mg,n(b1, . . . , bn); it

is known to be finite.

Example: M1,1M1,1M1,1.

VolWPM1,1(b
2
1) =

1

24

(

b21 + 4π2
)

.

Example: M1,2M1,2M1,2.

VolWPM1,2(b
2
1, b

2
2) =

1

192

(

b21 + b22 + 4π2
)(

b21 + b22 + 12π2
)

.
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Averaging the counting function: statement of results

24 / 27

We are interested in counting the number sX(L, γ) of simple closed geodesic

multicurves on X ∈ Mg,n of topological type [γ] and of hyperbolic length at

most L. Following Mirzakhani, we shall count first the average of the quantity

sX(L, γ) over Mg,n with respect to the Weil–Petersson volume element:

P (L, γ) :=

∫

Mg,n

sX(L, γ) dX .

Theorem (M. Mirzakhani, 2008). The average number P (L, γ) of closed

geodesic multicurves of topological type [γ] and of hyperbolic length at most L

is a polynomial in L of degree 6g − 6 + 2n. The leading coefficient of this

polynomial
cγ := lim

L→+∞

P (L, γ)

L6g−6+2n

is expressed in terms of the Weil–Petersson volumes of the associated moduli

space of bordered hyperbolic surfaces.
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Convenient cover: model case

25 / 27

Consider the cover Mγ
1,1 over M1,1 where the point of the cover Mγ

1,1 is a
hyperbolic surface X endowed with a distinguished simple closed geodesic α.

The fiber of the cover can be identified with Mod1,1 ·[γ], where γ is a essential

simple closed curve on a once punctured torus.

twist τ where 0 ≤ τ < ℓX(α)
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Consider the cover Mγ
1,1 over M1,1 where the point of the cover Mγ

1,1 is a
hyperbolic surface X endowed with a distinguished simple closed geodesic α.

The fiber of the cover can be identified with Mod1,1 ·[γ], where γ is a essential

simple closed curve on a once punctured torus.

twist τ where 0 ≤ τ < ℓX(α)

The cover Mγ
1,1 admits global coordinates. Namely, given (X,α) ∈ M

γ
1,1 cut

X open along the closed geodesic α. We get a hyperbolic pair of pants
P (l, l, 0); two geodesic boundary components of it have the same length

l = ℓX(α) and the third boundary component is the cusp. Reciprocally, from

any hyperbolic pair of pants P (l, l, 0) we can glue a hyperbolic surface X

endowed with a distinguished simple closed geodesic α. Constructing X from

the pair of pants P (l, l, 0) we have to chose the value of the twist parameter τ
in the interval [0, l[, where l = ℓX(α) is the length of the geodesic boundary.



Integration over M1,1

26 / 27

Mirzakhani observed that having a continuous function fγ(X) on M1,1 of the form

fγ(X) =
∑

[α]∈Mod1,1 ·[γ]

f(ℓX(α))

we can integrate it over M1,1 as follows

∫

M1,1

∑

[α]∈Mod1,1 ·[γ]

f(ℓα(X)) dX =

∫

M
γ
1,1

f(ℓα(X)) dl dτ =

=

∫

∞

0
f(l)

∫ l

0
dl dτ =

∫

∞

0
f(l) l dl .
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f(l)
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0
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∫

∞

0
f(l) l dl .

Note that our counting function sX(L, γ) is exactly of this form with f = χ([0, L]).
In this particular case we get

P (L, γ) :=

∫

M1,1

sX(L, γ) dX =

∫

∞

0
χ([0, L]) l dl =

∫ L

0
ℓdℓ =

L2

2
.
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Let γ be a nonseparating simple closed curve on Sg. Consider the analogous

cover Mγ
g over Mg where the point of the cover is a hyperbolic surface X

endowed with a distinguished simple closed geodesic α. Cutting X open along

α we get a bordered hyperbolic surface Y (l, l) in Mg−1,n+2(l, l), where

l = ℓX(α).
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M
γ
g
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1

2

∫ L

0

∫ l

0

∫

Mg−1,2(l,l)
dY dl dτ =

1

2

∫ L

0
VolWP

(

Mg−1,2(l, l)
)

l dl .
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∫ L

0
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0

∫
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dY dl dτ =

1
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∫ L

0
VolWP

(
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Mirzakhani proved that VolWP

(

Mg−1,2(l, l)
)

is an explicit polynomial in l of

degree 6(g − 1)− 6 + 2 · 2, so P (L, γ) is a polynomial of degree 6g − 6.
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