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Working with simple closed curves it is convenient to encode them (following

Thurston) by train tracks. Following Farb and Margalit we consider the model

case of four-punctured sphere S0,4 which we represent as a three-punctured

plane.
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We can progressively deform the simple closed curve as on the left picture in

transverse direction pushing it to the train track as on the right picture.

Recording the number of strands projected to each segment of the train track τ
we keep all homotopic information about the simple closed curve.

Each edge of the graph τ is the smooth image of an interval; at each vertex of
τ (called “switch”) there is a well-defined tangent line; the integer weights

(recording the number of strands) satisfy the switch condition at each switch:

the sums of the weights on each side of the switch are equal to each other.
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case of four-punctured sphere S0,4 which we represent as a three-punctured

plane.
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We can progressively deform the simple closed curve as on the left picture in

transverse direction pushing it to the train track as on the right picture.

Recording the number of strands projected to each segment of the train track τ
we keep all homotopic information about the simple closed curve.

Each edge of the graph τ is the smooth image of an interval; at each vertex of
τ (called “switch”) there is a well-defined tangent line; the integer weights

(recording the number of strands) satisfy the switch condition at each switch:

the sums of the weights on each side of the switch are equal to each other.

Note that the two weights in red uniquely determine all other weights.
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Which of the given train-tracks τ1, τ2, τ3 might carry a simple closed hyperbolic

geodesic? Indicate some legitimate weights if you claim that the train track

carries a simple closed hyperbolic geodesic.

τ1
τ2

τ3

Can any of the given train-tracks τ1, τ2, τ3 carry different simple closed

hyperbolic geodesic? Indicate the corresponding different legitimate collections

of weights if you claim that.
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Four basic train tracks on S0,4
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Up to isotopy, any simple closed curve in S0,4 can be drawn inside the three squares:

By further isotopy, we eliminate bigons with the vertical edges of the three squares.

Each connected component of the intersection of γ with the corresponding

square is now one of the six types of arcs shown at the right picture. Since γ is
essential, it cannot use both types of horizontal segments. Since the other two

types of arcs in the middle square intersect, γ can use at most one of those.
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Up to isotopy, any simple closed curve in S0,4 can be drawn inside the three squares:

By further isotopy, we eliminate bigons with the vertical edges of the three squares.

Each connected component of the intersection of γ with the corresponding

square is now one of the six types of arcs shown at the right picture. Since γ is
essential, it cannot use both types of horizontal segments. Since the other two

types of arcs in the middle square intersect, γ can use at most one of those.

Conclusion: there are four types of simple closed curves in S0,4, depending on

which of each of the two pairs of arcs they use in the middle square. This is the

same as saying that any simple closed curve is carried by one of the following

four train tracks:
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The four train tracks τ1, τ2, τ3, τ4 give four coordinate charts on the set of

isotopy classes of simple closed curves in S0,4. Each coordinate patch

corresponding to a train track τi is given by the weights (x, y) of two chosen

edges of τi. If we allow the coordinates x and y to be arbitrary nonnegative

real numbers, then we obtain for each τi a closed quadrant in R
2. Arbitrary

points in this quadrant are measured train tracks.
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Weight zero on an edge of a train track tells that such edge can be deleted.
This implies that pairs of quadrants should be identified along their edges.

The resulting space is homeomorphic to R
2. The integral points in this R2

correspond to isotopy classes of multicurves in S0,4.
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Space MLg,n and the length function
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Similar considerations applied to a smooth surface Sg,n lead to analogous

space MLg,n endowed with a piecewise linear structure.

Up to now we did not use hyperbolic metric on Sg,n. In the presence of a
hyperbolic metric, integral points of MLg,n can be interpreted as simple

closed geodesic multicurves.

Moreover: all other points also get geometric realization as measured geodesic

laminations — disjoint unions of non self-intersecting infinite geodesics.

The hyperbolic length ℓγ(X) of a simple closed geodesic γ on a hyperbolic

surface X ∈ Tg,n determines a real analytic function on the Teichmüller space.

One can extend the length function by linearity to simple closed multicurves:

ℓ∑ aiγi :=
∑

aiℓγi(X) .

By homogeneity and continuity the length function can be further extended to

MLg,n. By construction ℓt·λ(X) = t · ℓλ(X).
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Let us temporarily return to the situation when there is no hyperbolic metric on

a smooth surface Sg,n.

Train track charts define piecewise linear structure on MLg,n.

“Integral lattice” MLg,n(Z) provides canonical normalization of the linear

volume form µTh in which the fundamental domain of the lattice has unit volume.

Integral points in MLg,n are in a one-to-one correspondence with the set of

integral multi-curves, so the piecewise-linear action of Modg,n on MLg,n

preserves the “integral lattice” MLg,n(Z), and, hence, preserves the measure

µTh.

Theorem (H. Masur, 1985). The action of Modg,n on MLg,n is ergodic with

respect to the Lebesgue measure class (i.e. any measurable subset of MLg,n

invariant under Modg,n has measure zero or its complement has measure

zero). Any Modg,n-invariant measure in the Lebesgue measure class is just
Thurston measure rescaled by some constant factor.



Thurston measure on MLg,n

11 / 22

Let us temporarily return to the situation when there is no hyperbolic metric on

a smooth surface Sg,n.

Train track charts define piecewise linear structure on MLg,n.

“Integral lattice” MLg,n(Z) provides canonical normalization of the linear

volume form µTh in which the fundamental domain of the lattice has unit volume.

Integral points in MLg,n are in a one-to-one correspondence with the set of

integral multi-curves, so the piecewise-linear action of Modg,n on MLg,n

preserves the “integral lattice” MLg,n(Z), and, hence, preserves the measure

µTh.

Theorem (H. Masur, 1985). The action of Modg,n on MLg,n is ergodic with

respect to the Lebesgue measure class (i.e. any measurable subset of MLg,n

invariant under Modg,n has measure zero or its complement has measure

zero). Any Modg,n-invariant measure in the Lebesgue measure class is just
Thurston measure rescaled by some constant factor.



Thurston measure on MLg,n

11 / 22

Let us temporarily return to the situation when there is no hyperbolic metric on

a smooth surface Sg,n.

Train track charts define piecewise linear structure on MLg,n.

“Integral lattice” MLg,n(Z) provides canonical normalization of the linear

volume form µTh in which the fundamental domain of the lattice has unit volume.

Integral points in MLg,n are in a one-to-one correspondence with the set of

integral multi-curves, so the piecewise-linear action of Modg,n on MLg,n

preserves the “integral lattice” MLg,n(Z), and, hence, preserves the measure

µTh.

Theorem (H. Masur, 1985). The action of Modg,n on MLg,n is ergodic with

respect to the Lebesgue measure class (i.e. any measurable subset of MLg,n

invariant under Modg,n has measure zero or its complement has measure

zero). Any Modg,n-invariant measure in the Lebesgue measure class is just
Thurston measure rescaled by some constant factor.



Thurston measure on MLg,n

11 / 22

Let us temporarily return to the situation when there is no hyperbolic metric on

a smooth surface Sg,n.

Train track charts define piecewise linear structure on MLg,n.

“Integral lattice” MLg,n(Z) provides canonical normalization of the linear

volume form µTh in which the fundamental domain of the lattice has unit volume.

Integral points in MLg,n are in a one-to-one correspondence with the set of

integral multi-curves, so the piecewise-linear action of Modg,n on MLg,n

preserves the “integral lattice” MLg,n(Z), and, hence, preserves the measure

µTh.

Theorem (H. Masur, 1985). The action of Modg,n on MLg,n is ergodic with

respect to the Lebesgue measure class (i.e. any measurable subset of MLg,n

invariant under Modg,n has measure zero or its complement has measure

zero). Any Modg,n-invariant measure in the Lebesgue measure class is just
Thurston measure rescaled by some constant factor.



Thurston measure on MLg,n

11 / 22

Let us temporarily return to the situation when there is no hyperbolic metric on

a smooth surface Sg,n.

Train track charts define piecewise linear structure on MLg,n.

“Integral lattice” MLg,n(Z) provides canonical normalization of the linear

volume form µTh in which the fundamental domain of the lattice has unit volume.

Integral points in MLg,n are in a one-to-one correspondence with the set of

integral multi-curves, so the piecewise-linear action of Modg,n on MLg,n

preserves the “integral lattice” MLg,n(Z), and, hence, preserves the measure

µTh.

Theorem (H. Masur, 1985). The action of Modg,n on MLg,n is ergodic with

respect to the Lebesgue measure class (i.e. any measurable subset of MLg,n

invariant under Modg,n has measure zero or its complement has measure

zero). Any Modg,n-invariant measure in the Lebesgue measure class is just
Thurston measure rescaled by some constant factor.



Counting the measure of a set

12 / 22



Counting the measure of a set

12 / 22



Counting the measure of a set

12 / 22



Counting the measure of a set

12 / 22



Counting the measure of a set

12 / 22



Counting the measure of a set

12 / 22



Counting the measure of a set

12 / 22



Counting the measure of a set

12 / 22



Counting the measure of a set

12 / 22

By definition, the Lebesgue measure µ(U) of a set U ⊂ R
n is defined as the

limit of the normalized number of points of the ε-grid which get to U :

µ(U) := lim
ε→0

εn · card(U ∩ εZn) .
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By definition, the Lebesgue measure µ(U) of a set U ⊂ R
n is defined as the

limit of the normalized number of points of the ε-grid which get to U :

µ(U) := lim
ε→0

εn · card(U ∩ εZn) .

We can fix U and scale the lattice or can fix the lattice and scale U :

card(U ∩ εZn) = card
(1

ε
U ∩ Z

n
)
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Finally, instead of using the entire lattice Z
n we can use any sublattice

L
n ⊂ Z

n having some nonzero density k > 0 in Z
n.

For example, the set of coprime integral points in Z
2 has density k =

6

π2
and

can be also used to define the Lebesgue measure (scaled by the factor k) in

any of the two ways discussed above.
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Choose some integral multicurve γ, say, a simple closed curve on Sg,n. The

subset Oγ := Modg,n ·γ can be seen as an analog of a “sublattice” in MLg,n(Z).
The insight of Mirzakhani was to realize that replacing the discrete set MLg,n(Z)
with the subset Oγ we get a new measure on MLg,n which is proportional to the

Thurston measure µTh with coefficient depending only on the homotopy type of γ.
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More formally: the Thurston measure of a subset U ⊂ MLg,n is defined as

µTh(U) := lim
t→+∞

card{tU ∩MLg,n(Z)}

t6g−6+2n
.

Mirzakhani defines a new measure µγ as

µγ(U) := lim
t→+∞

card{tU ∩ Oγ}

t6g−6+2n
.

Clearly, for any U we have µγ(U) ≤ µTh(U) since Oγ ⊂ MLg,n(Z), so µγ
belongs to the Lebesgue measure class. By construction µγ is

Modg,n-invariant. Ergodicity of µTh implies that µγ = kγ · µTh where
kγ = const .



Proof of the main result

Space of multicurves

Thurston’s and
Mirzakhani’s measures
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Proof of the main result
• Length function and
unit ball

• Summary of notations

• Statement of the
counting result

• Completion of the
proof

• Average volume of
unit balls
• Mirzakhani’s volume
polynomials
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The hyperbolic length ℓγ(X) of a simple closed geodesic γ on a hyperbolic

surface X ∈ Tg,n determines a real analytic function on the Teichmüller space.

One can extend the length function to simple closed multicurves

ℓ∑ aiγi =
∑

aiℓ(γi)(X) by linearity. By homogeneity and continuity the

length function can be further extended to MLg,n. By construction
ℓt·λ(X) = t · ℓλ(X).

Each hyperbolic metric X defines its own “unit ball” BX in MLg,n:

BX := {λ ∈ MLg,n | ℓλ(X) ≤ 1} .
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By definition of µTh, the Thurston volume of the unit ball is equal to the

normalized number of integral points in a “ball of radius L” associated to X :

µTh(BX) = lim
L→+∞

card{λ ∈ MLg,n(Z) | ℓλ(X) ≤ L}

L6g−6+2n
.
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• X — a hyperbolic surface in Mg,n.

• sX(L, γ) — the number of geodesic multicurves on X of topological type

[γ] and of hyperbolic length at most L.

• P (L , γ) :=
∫

Mg,n
sX(L, γ) dX — the polynomial in L providing the

average number of geodesic multicurves of topological type [γ] and of
hyperbolic length at most L over all hyperbolic surfaces X ∈ Mg,n.

• c(γ) — the coefficient of the leading term L6g−6+2n of the polynomial

P (L , γ).

• B(X) — “Unit ball” in MLg,n defined by means of the length function
ℓX(α), where α ∈ MLg,n.

• µTh(B(X)) := limL→+∞

card{L ·BX ∩ML(Z)}

L6g−6+2n
is the Thurston

measure of the unit ball B(X)

• µγ(B(X)) := limL→+∞
card{L ·BX ∩Modg,n·γ}

L6g−6+2n
is the Mirzakhani

measure of the unit ball B(X) defined by the sublattice Modg,n·γ ⊂ ML(Z).



Statement of the counting result

19 / 22

Theorem (M. Mirzakhani, 2008). For any rational multi-curve γ and any

hyperbolic surface X in Mg,n one has

sX(L, γ) ∼ µTh(B(X)) ·
c(γ)

bg,n
· L6g−6+2n as L→ +∞ ,

where

bg,n :=

∫

Mg,b

µTh(B(X)) dX

is the average Thurston measure of unit balls B(X).



Completion of the proof
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Recall that sX(L, γ) denotes the number of simple closed geodesic multicurves

on X of topological type [γ] and of hyperbolic length at most L. Applying the

definition of µγ to the “unit ball” BX associated to hyperbolic metric X (instead

of an abstract set B) and using proportionality of measures µγ = kγ · µTh we get

lim
L→+∞

sX(L, γ)

L6g−6+2n
= lim

L→+∞

card{L ·BX ∩Modg,n ·γ}

L6g−6+2n
= µγ(BX) = kγ ·µTh(BX) .

Finally, Mirzakhani computes the scaling factor kγ as follows:

kγ · bg,n =

∫

Mg,n

kγ · µTh(B(X)) dX =

∫

Mg,n

µγ(B(X)) dX =

=

∫

Mg,n

lim
L→+∞

card{L ·BX ∩Modg,n·γ}

L6g−6+2n
dX =

∫

Mg,n

lim
L→+∞

sX(L, γ)

L6g−6+2n
dX =

= lim
L→+∞

1

L6g−6+2n

∫

Mg,n

sX(L, γ) dX = lim
L→+∞

P (L, γ)

L6g−6+2n
dX = c(γ) ,

so kγ = c(γ)/bg,n. Interchanging the integral and the limit we used the

estimate of Mirzahani sX (L,γ)
L6g−6+2n ≤ F (X), where F is integrable over Mg,n.
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Recall that

bg,n :=

∫

Mg,b

µTh(B(X)) dX

denotes the average volume of “unit balls” measured in Thurston measure.

Theorem (M. Mirzakhani, 2008). The quantity bg,n admits explicit expression
as a weighted sum of all c(γ) over (a finite collection) of all topological types

[γ] of multicurves.
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denotes the average volume of “unit balls” measured in Thurston measure.

Theorem (M. Mirzakhani, 2008). The quantity bg,n admits explicit expression
as a weighted sum of all c(γ) over (a finite collection) of all topological types

[γ] of multicurves.

Theorem (M. Mirzakhani, 2008).

bg = VolMV Qg = VolMV Q(14g−4) ,

where VolMV is appropriately normalized Masur–Veech volume.

Theorem (V. Delecroix, E. Goujard, P. Zograf, A. Z., 2017).

bg,n = VolMV Qg,n = VolMV Q(14g−4+n,−1n) .
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Theorem (M. Mirzakhani, 2008). Weil–Petersson volume of the moduli space

of boarded hyperbolic surfaces is a polynomial in lengths of boundary

components b21, . . . , b
2
n. Its term of top degree 3g − 3 + n has the form:

VolWP

(

Mg,n

)

(b21, . . . , b
2
n) =

2

25g−6+2n

∑

|d|=3g−3+n

〈ψd1
1 . . . ψdn

n 〉

d1! . . . dn!
b2d1 . . . b2dn +

+(terms of lower degree). Here 〈ψd1
1 . . . ψdn

n 〉 :=

∫

Mg,n

ψd1
1 . . . ψdn

n .

Example: M1,1M1,1M1,1. Here 3g − 3 + n = 1; 5g − 6 + 2n = 1; 〈ψ1
1〉 =

1
24 , so

VolWP

(

M1,1

)

(b21) =
2

21
〈ψ1〉

1!
b2·11 + lower terms =

1

24
b21+ lower terms .

Example: M1,2M1,2M1,2.
Here 3g − 3 + n = 2; 5g − 6 + 2n = 3; 〈ψ2

1〉 = 〈ψ1ψ2〉 = 〈ψ2
2〉 =

1
24 .

VolWP

(

M1,2

)

(b21, b
2
2) =

2

23

(

〈ψ2
1〉

2! 0!
b2·21 +

〈ψ1ψ2〉

1! 1!
b2·11 b2·12 +

〈ψ2
2〉

0! 2!
b2·22

)

+· · ·

=
1

192
(b41 + 2b21b

2
2 + b42) + lower terms .
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