
THREE LECTURES ON SQUARE-TILED SURFACES

CARLOS MATHEUS

Abstract. This text corresponds to a minicourse delivered on June 11, 12 & 13, 2018 during

the summer school “Teichmüller dynamics, mapping class groups and applications” at Institut

Fourier, Grenoble, France.

In this article, we cover the same topics from our minicourse, namely, origamis, Veech groups,

affine homeomorphisms, and the Kontsevich–Zorich cocycle.
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1. Basic properties of origamis

This section corresponds to the content of the video available here. The reader is invited to

consult Zmiaikou’s Ph.D. thesis [22] for more details about the topics covered in this section.

1.1. Definitions and examples. Let us start by defining square-tiled surfaces, i.e., origamis.

Definition 1. An origami is an orientable connected surface obtained from a finite collection of

unit squares of R2 after identifications of pairs of parallel sides via adequate translations.

Example 2. The square torus T2 = C/(Z⊕ iZ) is obtained from the unit square [0, 1]× [0, 1] from

identification by translations of parallel sides.

Similarly, the L-shaped origami in Figure 1 is obtained from a collection of three unit squares

by identification by translations of the sides with the same labels.

Figure 1. L-shaped origami

Remark 3. In Definition 1, by “identifications of pairs of parallel sides”, we actually mean that a

right vertical side of a square can only1 be glued to a left vertical side of a square, and similarly

for top and bottom sides of squares.

In particular, we forbid the identification of a pair of right sides of squares (for example).

Definition 4. An origami is a pair (X,ω), where X is a Riemann surface (complex curve) obtained

as a finite cover π : X → T2 := C/(Z⊕ iZ) branched only at the origin 0 ∈ T2, and ω := π∗(dz).

These definitions of origamis are equivalent :

• Def. 1 =⇒ Def. 4 because a translation is holomorphic and dz is translation-invariant;

• Def. 4 =⇒ Def. 1 because (X,ω) is obtained by gluing by translations the squares given

by the connected components of π−1((0, 1)× (0, 1)).

Remark 5. An origami is a particular case of the notion of translation surfaces: in a nutshell, a

translation surface is the object obtained from a finite collection of polygons by gluing parallel

sides by translations.

Equivalently, a translation surface is (X,ω) where X is a Riemann surface and ω is a non-

trivial Abelian differential (holomorphic 1-form). Here, it is worth to recall that the nomenclature

1In this way, we get a full Euclidean disk around any given point.

https://www.youtube.com/watch?v=PB8k-1MwshU
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“translation surface” comes from the fact that (X,ω) comes with an atlas of charts X 3 z 7→
∫ z
p
ω ∈

C centered at p ∈ X with ω(p) 6= 0 such that the changes of coordinates are given by translations

(because
∫ z
p
ω =

∫ q
p
ω +

∫ z
q
ω). In the literature, these charts are aptly called translation charts.

Definition 6. An origami is a pair of permutations (h, v) ∈ SymN × SymN acting transitively on

{1, . . . , N}.

Note that the definitions 1 and 6 are equivalent: we can label squares from 1 to N , and declare

that h(i), resp. v(i), is the number of the neighbor to the right, resp. on the top, of the square i.

Here, the fact that h and v act transitively on {1, . . . , N} is equivalent to the connectedness of

the corresponding origami.

Remark 7. These alternative definitions of origamis indicate that origamis are rich mathematical

objects which can be studied from multiple points of view (flat geometry, algebraic geometry,

combinatorial group theory, etc.).

Example 8 (Regular origamis). Let G be a finite group generated by two elements r and t. The

regular origami associated to (G, r, t) consists of taking unit squares Sq(g) for each g ∈ G and

declaring2 that Sq(g · r), resp. Sq(g · t), is the neighbor to the right, resp. on the top, of Sq(g).

This construction provides a rich source of origamis because many classes of finite groups gen-

erated by two elements are known, e.g.:

• the quaternion group G = {±1,±i,±j,±k} is generated by r = i and t = j, and the

associated regular origami is the so-called Eierlegende Wollmilchsau;

• the symmetric group G = Symn is generated by r = (1, 2) and t = (1, 2, . . . , n);

• the finite group of Lie type G = SL(2,Fp) is generated by r =

(
1 1

0 1

)
and t =

(
1 0

1 1

)
Remark 9. Since we are interested in origamis themselves rather than particular ways of num-

bering their squares, our pairs of permutations (h, v) will be usually thought up to simultaneous

conjugations, i.e., (h, v) and (φhφ−1, φvφ−1) determine the same origami.

1.2. Conical singularities. In general, the total angle around a corner of a square of an origami

O is a non-trivial multiple of 2π. Any such point is called a conical singularity of O.

Example 10. The corners of all squares of the L-shaped origami in Figure 1 are identified into a

conical singularity with total angle 6π.

Example 11. The square-tiled surface in Figure 2 has genus two and a conical singularity of total

angle 6π.

Remark 12. Conical singularities are a manifestation of the fact that a compact surface of genus

g > 1 can not carry a flat smooth metric (by Gauss–Bonnet theorem).

2Our choice of multiplying by r and t on the right is a matter of convention. As we will see later, this choice has

the slight advantage that an automorphism of a regular origami acts by left multiplication.



4 CARLOS MATHEUS

Figure 2. Origami with Swiss-cross shape (and genus 2).

From the combinatorial point of view, we turn around the leftmost bottom corner of a square

by 2π using the commutator [h, v] = vhv−1h−1: see Figure 3

i

Figure 3. Turning by 2π around a corner.

In other terms, the conical singularities correspond to non-trivial cycles c of [h, v] and the

corresponding total angles are 2π · length of c.

Example 13. The L-shaped origami L in Figure 1 is associated to the permutations h = (1, 2)(3)

and v = (1, 3)(2): see Figure 4

3

Figure 4. Labels for the squares of a L-shaped origami.

Since the commutator [h, v] is [h, v] = vhv−1h−1 = (1, 3, 2), we get that L has an unique conical

singularity of total angle 2π × 3 = 6π.

1.3. Genus. The Euler–Poincaré formula allows to express the genus g of an origami in terms of

the total angles 2π(kn + 1) around conical singularities:

2g − 2 =
∑

kn
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Exercise 14. Show this relation using triangulations for origamis.

Example 15. The origamis from Figures 1 and 2 both have an unique conical singularity with

total angle 6π = 2π(2 + 1), hence their genera are given by the formula 2g− 2 = 2, i.e., g = 2. (Of

course, we already knew this fact for the origami in Figure 2 [thanks to the pictures].)

Remark 16. A total angle of 2π(k + 1) around a conical singularity means that the natural local

coordinate is zk+1, i.e., the associated Abelian differential is a multiple of d(zk+1) = (k + 1)zkdz

near such a conical singularity.

1.4. Stratum and moduli spaces.

Definition 17. We say that an origami O belongs to the stratum H(k1, . . . , kσ) whenever the

total angles of its conical singularities are 2π(kn + 1), n = 1, . . . , σ.

Example 18. The L-shaped origami in Figure 1 belongs to H(2).

Proposition 19. An origami in H(k1, . . . , kσ) is tiled by at least
∑σ
n=1(kn + 1) squares.

Proof. We saw that an origami in H(k1, . . . , kσ) is given by a pair of permutations (h, v) ∈ SymN×
SymN whose commutator SymN 3 [h, v] has σ non-trivial cycles of lengths kn + 1, n = 1, . . . , σ.

Therefore,

N ≥
σ∑
n=1

(kn + 1)

�

Remark 20. This proposition implies that an origami in H(2) is made out of 3 squares at least.

Thus, in a certain sense, the origami in Figure 1 is one of the smallest possible origamis in H(2).

The nomenclature “stratum” comes from the fact that the moduli space of translation surfaces

of genus g is naturally stratified by fixing the total angles around conical singularities.

The basic idea behind the construction of moduli spaces of translation surfaces is simple: we

want to declare that two translation surfaces deduced from each other by cutting and gluing by

translations are the same.

Example 21. By cutting and pasting by translations as in Figure 5 we see that

(
1 1

0 1

)
T2 = T2

at the level of moduli space.

The discussion of moduli spaces is out of the scope of these notes: the reader can consult [9]

for more explanations. For this reason, we close this subsection with the following remarks about

moduli spaces of translation surfaces:

• The strata H(k1, . . . , kσ) are complex orbifolds and their local (period) coordinates are

related to the complex numbers (vectors in R2) representing sides of polygons;
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Figure 5. Cutting and pasting after shear.

• Square-tiled surfaces correspond to integral points of strata in a certain sense: cf. Gutkin–

Judge paper [10];

• Similarly to the fact (going back to Gauss) that the area of large balls and, consequently,

the area of the unit ball is related to counting integral points, the volumes of the strata

H(k1, . . . , kσ) of moduli spaces of translation surfaces (with respect to the so-called Masur–

Veech measures) are related to counting square-tiled surfaces.

Moreover, these counting problems leads to beautiful topics such as multi-zeta values,

quasi-modular forms, etc.: cf. Zorich [23], Eskin–Okounkov [6], etc.

• Strata are not always connected, but their connected components were completely classified

by Kontsevich–Zorich [13] in 2003; in particular, H(k1, . . . , kσ) has 3 connected components

at most.

1.5. Reduced and primitive origamis. The period lattice Per(ω) of an origami (M,ω) is the

lattice spanned by the holonomy vectors
∫
γ
ω of paths γ whose endpoints are conical singularities

of (M,ω).

Definition 22. An origami (M,ω) is reduced whenever its period lattice Per(ω) is Z⊕ iZ.

Equivalently, an origami π : O → T2 is reduced whenever any factorization π = p ◦ π′ with

π′ : O → T2 and p : T2 → T2 is trivial, i.e., p has degree 1.

Intuitively, a reduced origami does not have “unnecessary” squares: for instance, if we replace

the unit squares tiling the origami O1 in Figure 1 by squares with sides of length 2, then we get a

L-shaped origami O2 tiled by 12 unit squares3 which is not reduced; of course, we see that O2 is

not different from O1 except for the fact that there are “too many” unit squares in its construction.

Standing assumption. From now on, all origamis are assumed to be reduced unless explicitely

stated otherwise.

Remark 23. We can “reduce” an arbitrary origami via scaling.

Definition 24. An origami is primitive if it is not a non-trivial cover of another origami.

3Since each 2× 2 square is divided into four unit squares.
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A primitive origami is reduced, but the converse is not true in general: the square-tiled surface

in Figure 6 is reduced, but it is not primitive because it is a double cover of the L-shaped origami

in Figure 1.

Figure 6. Reduced and non-primitive origami.

Combinatorially speaking, the primitivity of an origami corresponds to the primitivity (in the

sense of combinatorial group theory) of the associated permutation subgroup.

More precisely, let O be an origami defined by two permutations (h, v) ∈ SymN × SymN ,

consider the set Sq(O) ' {1, . . . , N} of the squares tilingO, and denote by G = σ(O) the associated

permutation of Sym(Sq(O)): in a nutshell, G is the subgroup of Sym(Sq(O)) ' SymN generated

by the permutations h and v.

In this setting, it is possible to show that O is primitive if and only if G = σ(O) is primitive in

the sense that there is no block ∆ ⊂ Sq(O), i.e., a subset of cardinality 1 < #∆ < #Sq(O) with

α(∆) = ∆ or α(∆) ∩∆ = ∅ for each α ∈ G.

Theorem 25 (Zmiaikou). A primitive origami O ∈ H(k1, . . . , kσ) tiled by

N ≥

(
2

σ∑
n=1

(kn + 1)

)2

squares has associated permutation group σ(O) = Alt(Sq(O)) or Sym(Sq(O)).

Proof. The features of primitive subgroups of permutations groups is a classical topic in combina-

torial group theory. In particular:

• Jordan showed in 1873 that a primitive subgroup G of Symm containing a cycle of prime

order p ≤ n− 3 equals to Altm or Symm;

• more recently, some results obtained by Babai (in 1982) and Pyber (in 1991) imply that a

primitive subgroup G of Symm not containing the alternating group Altm satisfies

m < 4

(
min

α∈G\{id}
#supp(α)

)2

In our context of primitive origamisO, the desired theorem follows directly from the results of Babai

and Pyber because σ(O) contains the commutator [h, v] of a pair of permutations determining O
and the support of [h, v] has cardinality ≥

σ∑
n=1

(kn + 1) whenever O ∈ H(k1, . . . , kσ). �

Remark 26. • σ(O) is often used to distinguish origamis;
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• the previous theorem says that, in each fixed stratum H, for all but finitely many primitive

origamis O ∈ H, the subgroup σ(O) takes only two types of values (namely, Alt or Sym).
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2. SL(2,R)-orbits and homology of origamis

This section corresponds to the content of the video available here. The reader is invited to

consult Hubert–Schmidt survey [12] and the article [14] for more explanations and/or references

about the topics covered in this section.

2.1. Action of SL(2,R) on origamis. The linear action of g ∈ SL(2,R2) on R2 induces a natural

action on origamis, namely, we apply g to each of the squares tiling a given origami and we keep

identifying by translations the same4 pairs of sides. In particular, g(O) is a translation surface of

area N whenever O is an origami tiled by N unit squares in R2.

Example 27. The action of the matrix h =

(
1 1/2

0 1

)
on the L-shaped in Figure 1 is shown in

Figure 13.

h

Figure 7. Example of SL(2,R)-action.

The translation surface g(O) is not an origami in general. Nevertheless, g(O) is an origami

whenever g ∈ SL(2,Z): indeed, the cover O → T2 = R2/Z2 associated to the origami O induces a

cover g(O)→ g(R2)/g(Z2) = R2/g(Z2) and SL(2,Z) is the stabilizer of Z2 for the linear action of

SL(2,R) in R2.

Example 28. The cutting and pasting process in Figure 5 shows that

(
1 1

0 1

)
∈ SL(T2).

A similar argument also shows that

(
1 0

1 1

)
∈ SL(T2).

Remark 29. It is possible to show that SL(2,Z) is generated by

(
1 1

0 1

)
and

(
1 0

1 1

)
: see

Serre’s book [20].

4This is well-defined because the linear action of g respects the notion of parallelism.

https://www.youtube.com/watch?v=2FhadWJFWjA


10 CARLOS MATHEUS

2.2. Veech groups. The Veech group SL(O) of an origami O is the stabilizer of O in SL(2,R).

Note that SL(O) is a subgroup of SL(2,Z) when O is reduced. In fact, an origami (O, ω) is a

cover O → C/Per(ω) given by

O 3 z 7→
∫ z

p

ω ∈ C/Per(ω)

where p is a conical singularity and Per(ω) is the period lattice. On the other hand, if O is reduced,

then Per(ω) = Z⊕ iZ. Therefore, g ∈ SL(O) stabilizes Per(ω) = Z⊕ iZ, so that g ∈ SL(2,Z).

Example 30. The Veech group of T2 is SL(2,Z) (compare with Example 28 and Remark 29).

2.3. SL(2,Z)-orbits. In practice, we exploit the fact that T =

(
1 1

0 1

)
and S =

(
1 0

1 1

)
generate SL(2,Z) to study Veech groups and SL(2,Z)-orbits of origamis.

Example 31. The SL(2,Z)-orbit of the L-shaped origami from Figure 1 is displayed in Figure 8.

Figure 8. SL(2,Z)-orbit of a L-shaped origami.

The problem of computing SL(2,Z)-orbits of origamis can be solved in a purely combinatorial

way5 More precisely, let O be an origami determined by two permutations h, v ∈ SymN . Note that

T =

(
1 1

0 1

)
acts on a square labelled i as in Figure 9.

Hence, on T (O), the neighbor to the right of n is h(n) and the neighbor on the top of n is

vh−1(n). In other words, the action of T on pairs of permutations consists in sending O = (h, v)

to T (O) = (h, vh−1).

5In particular, it is not surprising that SL(2,Z)-orbits can be determined with computer programs: see Vincent

Delecroix’s webpage for more details.
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Figure 9. Action of T on pairs of permutations.

Similarly, the action of S =

(
1 0

1 1

)
on pairs of permutations can be deduced by symmetry

(i.e., exchanging the roles of h and v): it turns out that S maps O = (h, v) to S(O) = (hv−1, v).

Finally, these calculations are always performed while keeping in mind that pairs of permutations

(h, v) are taken modulo simultaneous conjugations (cf. Remark 9).

Remark 32. T and S are particular instances of Nielsen transformations.6 Note also that our

formulas for the actions of T and S on pairs of permutations imply that the permutation subgroup

σ(O) associated to an origami O is SL(2,Z)-invariant.

Proposition 33. Veech groups of (reduced) origamis are finite-index subgroups of SL(2,Z).

Proof. Our description of the actions of the generators T =

(
1 1

0 1

)
and S =

(
1 0

1 1

)
of SL(2,Z) on pairs of permutations says that SL(2,Z)-orbits of origamis are finite (because

#(SymN × SymN ) = (N !)2), so that Veech groups are finite-index subgroups of SL(2,Z) (because

they are stabilizers7 of origamis). �

Example 34. The L-shaped origami O0 from Figure 1 can be described by the permutations h0 =

(1, 2)(3) and v0 = (1, 3)(2).

Hence:

• the origami O1 = T (O0) is determined by the permutations h1 = h0 and v1 = v0h
−1
0 =

(1, 2, 3)

• the origami S(O1) is given by the permutations h = h1v
−1
1 = (1, 3)(2) and v = v1; as it

turns out, h and v are simultaneously conjugated to h1 and v1: indeed, h1 = φhφ−1 and

v1 = φvφ−1 where φ(1) = 2, φ(2) = 3 and φ(3) = 1; thus, S(O1) = O1.

Exercise 35. Compute the SL(2,Z)-orbit of the Eierlegende Wollmilchsau (cf. Example 8 and

Figure 10).

Among the important open problems about Veech groups and SL(2,Z)-orbits of origamis, we

can mention:

6Useful operations invented by Nielsen to recognize generating subsets of free groups.
7I.e., the quotient of SL(2,Z) by a Veech group is a SL(2,Z)-orbit.
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Figure 10. Eierlegende Wollmilchsau.

• classification of SL(2,Z)-orbits: Hubert–Lelièvre [11] and McMullen [17] showed that the

associated permutation subgroup σ(O) is a complete invariant for O ∈ H(2), but we have

only some conjectures (supported by numerical evidence) about SL(2,Z)-orbits of origamis

in H(1, 1), H(4), etc.

• classification of Veech groups: Schmithüsen showed that principal congruence subgroups of

SL(2,Z) are Veech groups of origamis (see [18]), but the Veech groups of origamis in H(2)

virtually never contain principal congruence subgroups (see [19]); in general, Ellenberg–

McReynolds [3] proved that any finite-index subgroup of the principal congruence group

of level 2 containing −Id is the Veech group of an origami, but we do not know examples

of finite-index subgroups of SL(2,Z) which are not Veech groups of origamis.

2.4. Automorphisms. An automorphism of an origami O = (X,ω) is a biholomorphism A :

X → X respecting ω.

Remark 36. Since ω = dz locally outside zeros, an automorphism acts by translations on squares.

The group of automorphisms of an origami O is denoted by Aut(O). By Remark 36, Aut(O) is

always a finite group.

On one hand, regular origamis possess rich groups of automorphisms:

Example 37. Given G a finite group generated by two elements r and t, denote by OG,r,t the

corresponding regular origami constructed in Example 8.

For a ∈ G, consider the map ϕa obtained by translating the square Sq(g) labelled g ∈ G to

the square Sq(a · g). Since “associativity is commutativity”8, we see that ϕa (= translation by

multiplication by a on the left of g) respects the identifications (=multiplications by r and t on the

right of g), so that ϕa is an automorphism of OG,r,t.

8Denis Sullivan uses this phrase to point out that “associativity” simply means that the operations of taking left

and right multiplications commute.
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In particular, G is naturally isomorphic to a subgroup of Aut(OG,r,t).

Exercise 38. Check that G ' Aut(OG,r,t) in Example 37.

On the other hand, the automorphisms groups of origamis in minimal strata are trivial:

Proposition 39. Aut(O) = {Id} whenever O ∈ H(2g − 2).

Proof. Otherwise, we can take A ∈ Aut(O) \ {Id} and consider the non-trivial finite cyclic cover

O → O′ = O/〈A〉

Denote by ∗ ∈ O and ∗′ ∈ O′ the unique conical singularities of these origamis. A small loop

around ∗′ is a product of commutators in π1(O′), so that its lift to O via the Abelian cover O → O′

is also a small loop. In other terms, the non-trivial finite cover O → O′ would be unramified, and,

a fortiori, O /∈ H(2g − 2), a contradiction. �

2.5. Affine homeomorphisms. An affine homeomorphism f : (X,ω) → (X,ω) of an origami

(X,ω) is an orientation-preserving homeomorphism respecting the conical singularities which is

affine in the translation charts z 7→
∫ z
p
ω from Remark 5.

The group of affine homeomorphisms of (X,ω) is denoted by Aff(X,ω).

An affine map on R2 is the action of a linear map followed by a translation. This description

can be used to show that

{Id} → Aut(O)→ Aff(O)→ SL(O)→ {Id}

is a short exact sequence (where Aut(O) → Aff(O) is the inclusion and Aff(O) → SL(O) is the

“derivative” map sending an affine homeomorphism to its linear part).

In particular, Aff(O) is isomorphic to SL(O) for an origami with Aut(O) = {Id}.

Remark 40. Given an origami O, its group of affine homeomorphisms Aff(O) is the stabilizer in

the mapping class group of its SL(2,R)-orbit inside Teichmüller space.

It was shown by Smillie that the SL(2,R)-orbit inside moduli space of an origami O is a closed

suborbifold isomorphic to SL(2,R)/SL(O).

The SL(2,R)-orbit of an origami O is called Teichmüller curve because SL(2,R)/SL(O) '
T 1H/SL(O) is the unit cotangent bundle to the Riemann surface (complex curve) H/SL(O).

2.6. Homology of origamis. Let O be an origami associated to a pair of permutations h, v ∈
SymN . Denote by Σ the subset of O consisting of all points at corners of squares of O.

For each square Sq(n), n ∈ {1, . . . , N}, of O, let us denote by σn the oriented (from left to right)

horizontal cycle corresponding to the bottom side of Sq(n), and ζn the oriented (from bottom to

top) vertical cycle corresponding to the left side of Sq(n): see Figure 11. Note that, by definition,

the top side of Sq(n) is σv(n) and the right side of Sq(n) is ζh(n).
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nζn

σn

Figure 11. Relative homology cycles of an origami

The relative homology group H1(O,Σ,R) is the module spanned by the cycles σn, ζn satisfying

the relations9

σn + ζh(n) = ζn + σv(n)

The boundary of an oriented cycle σ from a point A to a point B is the difference ∂σ = B −A.

The vector space H1(O,R) consisting of all cycles in H1(O,Σ,R) with zero boundary is the absolute

homology of O. It is known that H1(O,R) has dimension 2g where g is the genus of O.

The absolute homology H1(O,R) has a natural structure of symplectic vector space with respect

to the so-called intersection form. In a nutshell, given two simple oriented closed curves α and β

avoiding conical singularities and intersecting transversely, we attribute a sign εp = ±1 at each

point p ∈ α ∩ β depending on the orientation of the basis {α̇(p), β̇(p)} of TpO, and we define the

intersection of α and β by (α, β) =
∑

p∈α∩β
εp. Finally, we extend (., .) to H1(O,R) in a linear way.

The tautological plane Hst
1 (O) is the plane in absolute homology spanned by the cycles

σ :=
∑

n∈Sq(O)

σn and ζ :=
∑

n∈Sq(O)

ζn

Observe thatHst
1 (O) is a symplectic plane because (σ, ζ) = N = #Sq(O) (as σn and ζn intersects

only once in the middle of the square n). Thus,

H1(O,R) = Hst
1 (O)⊕H(0)

1 (O)

where H
(0)
1 (O) is the symplectic orthogonal of Hst

1 (O).

Exercise 41. Check that H
(0)
1 (O) is the (2g−2)-dimensional vector space of zero holonomy cycles,

i.e., H
(0)
1 (O) =

{
γ ∈ H1(O,R) :

∫
γ
ω = 0

}
.

Remark 42. The decomposition H1(O,R) = Hst
1 (O)⊕H(0)

1 (O) is defined over Z.

9Accounting for the fact that the cycle σn + ζh(n) − σv(n) − ζn vanishes in homology because it bounds a piece

of surface (namely, the interior of Sq(n)).
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3. Actions on homologies of origamis

This section corresponds to the content of the video available here. The reader is invited to

consult Hubert–Schmidt survey [12] and the articles [15], [16] for more explanations.

An inspection of Figure 9 reveals that the action on relative homologies of (a certain affine

homeomorphism with linear part) T =

(
1 1

0 1

)
with respect to the generating cycles {σn, ζn}

on O and {σ′n, ζ ′n} on T (O) is

T (σn) = σ′n and T (ζn) = ζn + σ′vh−1(n)

where (h, v) is a pair of permutations representing O.

Similarly, the action of (a certain affine homeomorphism with linear part) S =

(
1 0

1 1

)
on

the relative homologies of O and S(O) is

S(σn) = σ′′n + ζ ′′hv−1(n) and S(ζn) = ζ ′′n

In principle, the action on absolute homologies can be deduced from these formulas. In practice,

it is sometimes more convenient to exploit the geometry of the examples at hand.

3.1. Cylinder decompositions and Dehn twists. The actions of T and S onH1(T2) = Hst
1 (T2)

with respect to the basis {σ, ζ} is very simple:

T (σ) = σ, T (ζ) = ζ + σ, S(σ) = σ + ζ, S(ζ) = ζ,

that is, the matrices representing the actions of T , resp. S, on H1(T2) with respect to the basis

{σ, ζ} are

(
1 1

0 1

)
, resp.

(
1 0

1 1

)
.

Actually, the same fact is true in general: the actions of T and S on the tautological planes of

origamis are represented by the matrices(
1 1

0 1

)
, resp.

(
1 0

1 1

)
(3.1)

On the other hand, the actions on the zero holonomy subspaces H
(0)
1 are extremely sensitive to

the geometry of the origamis at hand.

For example, let us consider the origami L in Figure 12.

The absolute cycles {σ1, σ2, ζ1, ζ2} indicated in Figure ??? form a basis of H1(L,R). In fact, we

know that L has genus 2, so that H1(L,R) has dimension 4 = 2× 2. Hence, our task is reduced to

show that:

Exercise 43. Check that σ1, σ2, ζ1, ζ2 are linearly independent.10

10Hint: Use the intersection form, e.g., σ2 = λσ1 would imply 1 = (σ2, ζ1) = λ(σ1, ζ1) = λ·0 = 0, a contradiction.

https://www.youtube.com/watch?v=MZAnS0YRw5g
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σ1

σ2

ζ2

ζ1

Figure 12. Cycles in the absolute homology of a L-shaped origami

Let us now compute the action of T 2 =

(
1 2

0 1

)
with respect to the basis {σ1, σ2, ζ1, ζ2}.

Remark 44. We chose T 2 because T 2 ∈ SL(L) (cf. Figure 8).

For this sake, we need to recall the notions of cylinder decompositions and Dehn twists.

Definition 45. A cylinder is a maximal collection of parallel closed geodesics.

In Figure 13, we indicated two (white and grey) cylinders in L consisting of horizontal closed

geodesics.

σ2

σ1

Figure 13. Horizontal cylinders on a L-shaped origami.

In general, any origami decomposes as the union of finitely many cylinders of closed geodesics

in any fixed direction of rational slope. In the literature, this is called the cylinder decomposition11

of the origami in the prescribed rational direction: for instance, Figure 13 illustrates the cylinder

decomposition in the horizontal direction of a L-shaped origami.

A horizontal cylinder is isometric to a rectangle [0, `]× [0, h] whose vertical sides {0}× [0, h] and

{`} × [0, h] are identified by translation.

11Cylinder decompositions are a particular case of the so-called Thurston–Veech construction.
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The parabolic matrix t =

(
1 `/h

0 1

)
acts on the horizontal cylinder [0, `]× [0, h] in a simple

way: it shears this cylinder C into a parallelogram P in such a way that it is possible to cut P into

two triangles and paste them back by translation in order to recover C (compare with Figure 5).

In this process, the waist curve w = [0, `] × {h/2} of the horizontal cylinder [0, `] × [0, h] is

preserved by the parabolic matrix t, but a vertical cycle γ connecting the bottom side [0, `]× {0}
to the top side [0, `]× {h} is sent by t to

t(γ) = γ + w

This operation is an example of Dehn twist about w.

Coming back to the calculation of the action of T 2 on H1(L,R), we have that T 2 acts by Dehn

twists on the white and grey horizontal cylinders in Figure 13. Hence,

T 2(σ1) = σ1, T 2(σ2) = σ2, T 2(ζ1) = ζ1 + σ2, T 2(ζ2) = ζ2 + σ2 + 2σ1.

Note that the cycles σ and ζ spanning the tautological plane Hst
1 (L) are

σ = σ1 + σ2, ζ = ζ1 + ζ2

It follows from the previous formulas that T 2(σ) = σ and T 2(ζ) = ζ+2σ. In particular, we recover

the fact mentioned in (3.1) that T 2 acts on the tautological plane by the matrix

(
1 2

0 1

)
.

The zero holonomy space H
(0)
1 (L) is generated by the cycles Σ = σ2 − 2σ1 and Z = ζ2 − 2ζ1.

Again, it follows from the previous formulas that T 2 acts on H
(0)
1 (L) as

T 2(Σ) = Σ and T 2(Z) = Z − Σ.

In other terms, T 2|
H

(0)
1 (L)

acts by the matrix

(
1 −1

0 1

)
.

In summary, the matrix of the action of T 2 on H1(L,R) with respect to the basis {σ, ζ,Σ, Z} is
1 2 0 0

0 1 0 0

0 0 1 −1

0 0 0 1


Remark 46. This strategy of understanding complicated actions (like

(
5 2

2 1

)
= T 2S2) on

origamis via cylinder decompositions and Dehn twists goes back to Thurston.

3.2. Kontsevich–Zorich cocycle. In general, the action on homology of affine homeomorphisms

of an origami O gives rise12 to a representation

ρ : Aff(O)→ Sp(H1(O,R))

12Here, we are using the fact that the symplectic intersection form on homology is invariant under the natural

action of an orientation-preserving homeomorphism.
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Note that ρ is reducible: Aff(O) respects the decomposition H1(O,R) = Hst
1 (O)⊕H(0)

1 (O).

The image of ρ|
H

(0)
1 (O)

is the Kontsevich–Zorich monodromy of O. The nomenclature comes

from the following well-known construction (cf. Figure 14): given the representation ρ, we build a

flat bundle with a natural SL(2,R)-action by considering the trivial bundle SL(2,R) ×H1(O,R)

where g ∈ SL(2,R) acts by g(h, γ) = (gh, γ), and by taking the quotient of SL(2,R)×H1(O,R) by

the diagonal action of Aff(O) (where f ∈ Aff(O) maps (h, c) to (d(f)h, ρ(f)c) where d(f) ∈ SL(O)

is the linear part of f).

ω0

c0

ct

ωt

ρ
ρ∗(ωt)

ρ∗(ct)

Figure 14. Kontsevich–Zorich cocycle over a fundamental domain of SL(2,R)/SL(O).

The curious reader might want to look in the literature for the keywords local systems, Hodge

bundle, variations of Hodge structures (of weight 1), Gauss–Manin connection, Kontsevich–Zorich

cocycle, ... for more informations.

Remark 47. In this setting, the Kontsevich–Zorich cocycle over the Teichmüller flow is the action

of gt :=

(
et 0

0 e−t

)
on the flat bundle constructed above.

3.3. Monodromy constraints. Let O be an origami and denote by G = Aut(O) its finite group

of automorphisms. In the sequel, we will use the representation theory of the finite group G to

impose restrictions on the natural representation ρ : Aff(O)→ Sp(H1(O,Z)).

Observe that Aff(O) acts on G by conjugation because the conjugate of a translation by an

affine map is a translation. In other words, we have a natural homomorphism Aff(O)→ Sym(G).

Hence, the kernel Aff∗(O) of Aff(O)→ Sym(G) is a finite-index subgroup of Aff∗(O) such that

any f ∈ Aff∗(O) commutes with all g ∈ G.
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In particular, if we decompose the G-module H1(O,R) into G-isotypical components Wα, i.e.,

H1(O,R) =
⊕

α∈IrrR(G)

Wα

where IrrR(G) is the set of irreducible G-representations, then the matrices in ρ(Aff∗(O)) preserve

each Wα.

It is known (cf. Serre’s book [21]) that there are three types of α ∈ IrrR(G) depending on its

commuting algebra Dα:

• α is real, i.e., Dα ' R;

• α is complex, i.e., Dα ' C;

• α is quaternionic, i.e., Dα ' H = {a+bi+cj+dk : a, b, c, b ∈ R, i2 = j2 = k2 = −1, ij = k}.

This information was exploited in [16] to prove that:

• if α is real, then ρ(Aff∗(O))|Wα
⊂ Sp(dα,R) (where dα = dim(Wα));

• if α is complex, then ρ(Aff∗(O))|Wα
⊂ SU(pα, qα);

• α is quaternionic, then ρ(Aff∗(O))|Wα ⊂ SO∗(2nα).13

Remark 48. Filip [7] studied recently the constraints on the Kontsevich–Zorich cocycle in more

general situations.

3.4. Lyapunov exponents. In their study of Lorenz gases (in Statistical Mechanics), P. Ehrenfest

and T. Ehrenfest introduced (circa 1920) their wind-tree models: for instance, the Z2-periodic

version of Ehrenfest’s wind-tree model of Lorenz gases consists of studying billard trajectories on

a billiard table Xa,b obtained from the plane R2 by placing rectangular obstacles (whose sides are

parallel to the axes) of dimensions 0 < a, b < 1 centered at each point of Z2. See Figure 15 for an

illustration.

Figure 15. Z2-periodic wind-tree model (after Vincent Delecroix).

Given a point x ∈ Xa,b and a direction θ, we denote by {φtθ(x)}t∈R the billiard trajectory in

Xa,b starting at x in the direction θ. The diffusion rate of a billiard trajectory {φtθ(x)}t∈R is

lim sup
t→+∞

log dR2(x, φtθ(x))

log t

13Recall that SO∗(2n) := {A ∈ GL(n,H) : σ(A)A = Id}, where σ(a+ bi+ cj + dk) := a− bi+ cj + dk.
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where dR2 stands for the Euclidean distance.

Intuitively, the diffusion rates are physically interesting because they measure the polynomial

speeds of escape to infinity of billiard trajectories in Xa,b.

In 1980, Hardy and Weber conjectured that the typical diffusion rate is abnormal14: for Lebesgue

almost every x ∈ Xa,b and θ, one has lim sup
t→+∞

log dR2 (x,φ
t
θ(x))

log t 6= 1/2.

This conjecture was confirmed in 2014 by Delecroix–Hubert–Lelièvre [1]: they showed that

lim sup
t→+∞

log dR2(x, φtθ(x))

log t
= 2/3

for Lebesgue almost every x ∈ Xa,b and θ.

As it turns out, the sole (currently) known proof of this fact relies on the Lyapunov exponents

of the Kontsevich–Zorich cocycle.

Remark 49. It is unlikely that the diffusion rate 2/3 above admits a “simple” or “intuitive” ex-

planation. Indeed, Delecroix–Zorich [2] showed in 2015 that the simple variant of the Z2-periodic

wind-tree model where “one obstacle out of four is removed” (see Figure 16) has the complicated

typical diffusion rate 491/1053.

Figure 16. A wind-tree model extracted from Fig. 10 in Delecroix–Zorich paper [2].

Intuitively, Lyapunov exponents of a linear cocycle are relative versions of eigenvalues of matri-

ces: roughly speaking, linear cocycles are families of matrices and Lyapunov exponents are families

of (logarithms of moduli of) eigenvalues.

In the particular context of the Kontsevich–Zorich monodromy ρ : Aff(O) → Sp(H1(O,R)) of

an origami O, the Lyapunov exponents of O are

lim
n→∞

log ‖ρ(An . . . A1)v‖
log ‖ρ(An . . . A1)‖

, v ∈ H1(O,R)

14This nomenclature is motivated by the fact that random walks and Sinai billiards satisfy the so-called central

limit theorem saying that the corresponding trajectories are driven by the normal distribution and, in particular,

the typical diffusion rate is 1/2.
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where An . . . A1 is a random product of elements of Aff(O) with respect to an appropriate proba-

bility measure with full support.

Remark 50. This is not the usual definition of Lyapunov exponents of O: normally, we consider

the elements of Aff(O) appearing along a typical orbit of the Teichmüller flow gt :=

(
et 0

0 e−t

)
on SL(2,R)/SL(O). The fact that these definitions coincide relies on the important works of

Furstenberg, Margulis, Kaimanovich, ... saying that a typical gt-orbit is “tracked” by an appro-

priate random walk: see [5] and the references therein for more details.

Since ρ(Aff(O)) is a subgroup of the group Sp(H1(O,R)) of symplectic automorphisms of the

2g-dimensional space H1(O,R), it is not hard to check that the Lyapunov exponents of O have

the form15

1 = λ1(O) ≥ λ2(O) ≥ · · · ≥ λg(O) ≥ −λg(O) ≥ · · · ≥ −λ2(O) ≥ −λ1(O) = −1

Moreover, it was shown by Forni [8] that λ2(O) < 1, but it is not easy in general to compute

the values of Lyapunov exponents16.

Nevertheless, Eskin–Kontsevich–Zorich [4] proved that the sum λ1(O) + · · · + λg(O) are given

by the following explicit formula:

1 + λ2(O) + · · ·+ λg(O) =
1

12

σ∑
n=1

kn(kn + 2)

kn + 1
+

1

#SL(2,Z)O
∑

X∈SL(2,Z)O,
c cycle of hX

1

length of c
,

where an origami X in the SL(2,Z)-orbit of O in the stratum H(k1, . . . , kσ) is thought as a pair

of permutations (hX , vX).

Remark 51. This combinatorial formula is well-adapted for computer experiments (in Sage, say).

The proof of the Eskin–Kontsevich–Zorich formula is out of the scope of these notes: it is a long

argument (the original article [4] has more than 100 pages) using heavy technology from algebraic

geometry, hyperbolic geometry, etc.

For this reason, we will close our discussions with the following application of Eskin–Kontsevich–

Zorich formula to the calculation of the Lyapunov exponents of the Eierlegende Wollmilchsau EW

(from Example 8 and Figure 10).

In this direction, we observe that EW is an origami of genus 3 in the stratum H(1, 1, 1, 1), its

SL(2,Z)-orbit is SL(2,Z) ·EW = {EW}, and the horizontal permutation hEW of EW consists of

two cycles of lengths 4. By plugging these informations into Eskin–Kontsevich–Zorich formula, we

obtain

1 + λ2(EW ) + λ3(EW ) =
1

12
× 4× 1× 3

2
+

1

1
× 2× 1

4
= 1

15This reflects the fact that the eigenvalues of symplectic matrices come into pairs θ, 1/θ.
16Nevertheless, one can usually get numerical approximations by calculating (with Sage for example) the actions

on homology of the matrices SbnTan . . . Sb1Ta1 ∈ SL(2,Z) for random choices of ak, bk ∈ N.
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Thus, λ2(EW ) + λ3(EW ) = 0, i.e., λ2(EW ) = λ3(EW ) = 0.

Remark 52. This behavior of Lyapunov exponents of the Eierlegende Wollmilchsau is in sharp con-

trast with Forni’s theorem [8] ensuring that the Lyapunov exponents of the Masur–Veech measures

never vanish.

Remark 53. The Lyapunov exponents of the Eierlegende Wollmilchsau can be computed by alter-

native methods: see, e.g., [9] and [15].

References

1. V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm.
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